Progress of Biochar Supercapacitors

Junhua Jiang

1st Midwest Biochar Conference

June 14, 2013

Acknowledgement

- Management team and staff at the ISTC (Nancy Holm, Ed Delso, Xinying Wang, John Scott, et al.)
- Illinois Hazardous Waste Research Fund
- Dr. Lei Zhang and Prof. Frank Chen at the University of South Carolina
- Staff at the Beckman Institute, the Frederick Seitz Materials Research Laboratory, and the Illinois State Geological Survey of the UIUC

Supercapacitor Applications

Traditional market

- Electronics: camera, flashlights, PC cards, portable media players, and automated meter reading equipment
- Telecom and others: Complementing batteries (uninterruptible power supplies, handle short interruptions)
- Emerging market
 - Transportation (electric vehicles, buses, aerospace)
 - Energy storage

Supercapacitor Energy Storage

Energy storage-conversion Ragone plot

Efficiency-lifetime properties

Industry Outlook

Due to its fast charge-discharge capability (power density), we expect ultracapacitor use to rise along with batteries for future EV and ESS applications.

New materials are being developed that should lead to the energy density of ultracapacitors increasing.

We forecast the ultracapacitor market to expand tenfold, from US\$0.5bn in 2010 to US\$5.0bn by 2020.

Cost Breakdown

- □ Cost is the key market consideration and barrier for mass adoption.
- Materials account for a large portion of overall costs compared to other storage technologies.
- Electrodes account for a significant portion of the materials.

Biochar electrode

Potential low cost \$0.1/kg vs \$5/kg for activated carbon

□ Low carbon footprint

□ Highly developed surface area (~400 m² g⁻¹)

Excellent chemical and electrochemical stability

□ High conductivity

High utilization of surface area

High-Carbon Zero-Ash Biochar

	E		E/	/ KeV				
0.40	0.80	1.20 1	.60 2.00	2.40	2.80	3.20	3.60	4.00
		Total		100	100			
		ОК		2.36	1.78	0.0071		
		СК		97.64	98.22	0.9637		
С		Eleme	nt	Wt %	At %	K-Ratio		

Electrical Conductivity

1l

		$\sigma = (\theta: \text{ porosity})$
Sample	Conductivity / S cm ⁻¹	RA(1-0)
Biochar	1.0 ~ 50	
Vulcan 3	38.0	
Vulcan 6	26.2	•
Black pearls 880	32.0	σ
Black pearls 1300	34.1	
Black pearls 2000	7.0	
Sterling V	21.2	
Graphite	300	

ILLINOIS SUSTAINABLE TECHNOLOGY CENTER PRAIRIE RESEARCH INSTITUTE t/°C

Porous model

X-ray Computed Tomography of Corn Cob Biochar

TECHNOLOGY CENTER

CT of Corn Cob Pith

1

Softwood Biochar

Hardwood Biochar

Original Biochar Supercapacitor

- Typical supercapacitor responses
- Fast charge-discharge bahavior
- Good lifetime
- □ Low environmental impact
- Low cost
- □ However, specific capacitance is low (10~20 F g⁻¹)

Pseudocapacitance

Activity of O-groups

AIRIE RESEARCH INSTITUTE

Activation of Biochar

Current-potential curve

Constant current charge-discharge

Raman and FTIR Patterns

ILLINOIS SUSTAINABL TECHNOLOGY CENTE

Capacity of Biochar in Aqueous Electrolyte

Electrode material	Specific capacitance (F g ⁻¹)	BET Surface area (m² g⁻¹)	
Activated Biochar	100 to 300	300~400	
Carbon black	100 to 300	1000~2000	
Activated carbon	100 to 400	1000~3000	
Mesoporous carbon	100 to 200	1500~2500	
Reduced graphene oxide	150 to 250	2000~3000	
Multiwall carbon nanotube	100 to 150	500~1000	
Single-wall carbon nanotube	100 to 200	1500~2000	

Source: Zhang & Zhao, ChemSusChem, 5 (2012) 818-841.

Electrolyte Dependence

Solvent Or salt	Anode potential limit / V	Cathode potential limit / V	Potential window / V
Water	-0.20	1.2	1.4
Acetonitrile	-2.8	3.3	6.1
Propylene carbonate	-3.0	3.6	6.6
TEABF ₄	-3.0	3.65	6.65

*Potential vs SCE. Source: Aurbach et al, Nonaqueous electrochemistry, Marcel, 1999

Maximum energy stored

 $E_{max} = CV^2/2$ (V: cell operating voltage)

Specific Capacity of Biochar in non-Aqueous Electrolyte

	Electrode material	Specific capacitance (F g ⁻¹)	Surface area (m ² g ⁻¹)
	Biochar in TEABF ₄	75	400
	Biochar in TEAPF ₆	35	400
	Biochar in TBAPF ₆	30	400
ſ	Activated carbon TEABF ₄	90 to 140	1000 to 1400
	Mesoporous carbon in TEABF ₄	70 to 160	1500 to 2000
	Graphene in TEABF ₄	100	~3000
	Carbon nanotube in TEABF ₄	80 to 110	~2000

Source: J. Zhang & X. Zhao, ChemSusChem 5 (2012) 818-841.

Charge Transport Model

 Z_w : Warburg transport resistance

ILLINOIS SUSTAINABLE TECHNOLOGY CENTER PRAIRIE RESEARCH INSTITUTE

Conclusions

- Biochars have finger-print microstructures inherited their corresponding biomass precursors;
- Low ash even zero-ash high carbon bichars can be prepared from wood feedstocks;
- Biochar supercapacitors have demonstrated promising capacity and durability which are comparable to those of using advanced carbon materials, especially in aqueous media;
- Surface activation of biochars substantially increases their capacitance and degree of surface utilization;
- Woody biochars with developed surface area, good conductivity, electrochemical stability, and interesting pore network will be promising energy and environmental materials.

THANK YOU!

ILLINOIS SUSTAINABLE TECHNOLOGY CENTER PRAIRIE RESEARCH INSTITUTE