
materials

Review

Applications of Graphene-Modified Electrodes in
Microbial Fuel Cells
Fei Yu 1,2,†, Chengxian Wang 1,† and Jie Ma 1,2,*

1 School of Chemical and Environmental Engineering, Shanghai Institute of Technology,
100 Hai Quan Road, Shanghai 201418, China; fyu@vip.163.com (F.Y.); wang3359@163.com (C.W.)

2 State Key Laboratory of Pollution Control and Resource Reuse,
School of Environmental Science and Engineering, Tongji University,
1239 Siping Road, Shanghai 200092, China

* Correspondence: jma@tongji.edu.cn; Tel.: +86-21-6598-1831
† These authors contributed equally to this work.

Academic Editor: Hong Liu
Received: 18 August 2016; Accepted: 5 September 2016; Published: 29 September 2016

Abstract: Graphene-modified materials have captured increasing attention for energy applications
due to their superior physical and chemical properties, which can significantly enhance the electricity
generation performance of microbial fuel cells (MFC). In this review, several typical synthesis
methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly
methods, and chemical vapor deposition, are summarized. According to the different functions
of the graphene-modified materials in the MFC anode and cathode chambers, a series of design
concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving
the extracellular electron transfer efficiency for anode electrodes and increasing the active sites
and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of
MFC electrodes, graphene-modified electrodes are promising for MFC development to address the
reduction in efficiency brought about by organic waste by converting it into electrical energy.
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1. Introduction

Although fossil fuels are essential for economic development, the increasing consumption of
fossil fuels has come with significant negative drawbacks, such as air pollution and global warming,
which have consequently accelerated the exploration of renewable energy technologies by scientists [1,2].
The microbial fuel cell (MFC) is a promising recently developed device that can convert the
chemical energy stored in organic fuels as nutritional substrates into electrical energy though the
metabolism of microorganisms, while degrading the organic contaminant to an extent [3–5]. Compared
with traditional chemical fuel cells [6], large-scale organic substrates, such as municipal treatment
plants [7,8], agriculture wastes, solid wastes from dairy farms [9–12], and even human waste [13,14],
can be used as fuels in MFCs. However, many factors affect the performance of MFCs, including
the chemical substrate, ionic concentration, proton exchange material, catalyst, internal resistance,
electrode spacing, and electrode materials [15–20]. The low extracellular electron transfer (EET)
efficiency between the microorganism and the electrode is still the main bottleneck limiting the practical
applications of MFCs, resulting in poor energy conversion efficiency and low power density [21].
Generally, there are two main approaches used to cope with these problems: one is to improve the
electrode properties by surface treatment [22], for example, by means of microbial reduction [23],
electrostatic incorporation or ionic liquid functionalization [21]; the other is to fabricate new electrode
materials to enhance the EET at the anode or the catalytic activity at the cathode [22].
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Because microbial growth on metal surfaces can accelerate metallic corrosion in an aqueous
environment [24], carbon-based materials, such as carbon cloth [3], carbon paper [25], carbon felt [26],
carbon fiber [27] and graphite particles [4,28], are used as electrode materials for MFCs. With the
rapid developments in materials research, graphene, a new and renowned member of the carbon
family, has been adopted in MFC electrodes because of its excellent physical and chemical properties,
for instance, its high specific surface area (2630 m2·g−1) [29–31], outstanding electrical conductivity [32],
and extraordinary biocompatibility [33]. Additionally, it has been widely used in Li-ion batteries [34],
supercapacitors [35,36], sensors [37], electrochemical catalysts [38], and oil sorbents [39].

Graphene, discovered in 2004 by Geim and Novoselov [40], is a two-dimensional (2D)
single-atom-thick flat material consisting of sp2 hybridized carbon atoms arranged in a honeycomb
lattice [41–43]; at present, graphene is the thinnest material in the world. Its theoretical thickness
value, band length, and bond angle are 0.335 nm, 0.142 nm, and 120◦, respectively [44]. However,
the monolayer graphene sheet is known to irreversibly agglomerate or form multilayer graphite
through strong π-π stacking and van der Waals interactions [45]. Graphene oxide (GO) is an important
derivative of graphene that contains heavy epoxy and hydroxyl functional groups on the basal planes,
and carbonyl and carboxyl groups on the sheet edges, which make it possible to fabricate graphene
based materials on a large scale [42]. Although these functional groups increase its hydrophilic
character, the conjugated sp2 network of the individual graphene basal planes is disrupted and the
electrical properties of GO are decreased. Therefore, the removal of oxygen functional groups can
enhance the electrical conductivity of graphene modified materials.

Compared with 2D graphene, three-dimensional (3D) graphene structures have outstanding
characteristics, e.g., a large accessible surface, excellent mechanical strength, and remarkable
flexibility [46], which can enhance the number of microorganisms on their surface and are the ideal
electrode materials in MFCs. Recently, different reduction methods have been developed to obtain
macroscopic 3D graphene structures from GO sheets, e.g., hydrothermal reduction, chemical vapor
deposition, chemical reduction, electrochemical reduction, and microbial reduction [47]. In this review,
the methodologies on the synthesis of graphene-based electrodes, and the design principles of a
desirable MFC electrode are covered. The influence of graphene-modified electrodes (anodes and
cathodes) on the electricity generation of MFCs is analyzed and discussed.

2. Synthesis Methods of Graphene-Modified Electrodes

Due to the appealing properties and outstanding structures of graphene, significant effort has
been devoted to the fabrication of graphene-modified electrodes to enhance the EET between the
anode materials and microbes at the anodes, and the catalytic activity at the cathodes. GO can be
synthesized from graphite using the modified Hummers method, and it always functions as a precursor
to prepare graphene and its composites in many studies. The different types of synthesis methods for
graphene-modified electrodes in MFCs are summarized in this section.

2.1. Oxidization and Reduction Methods

The oxidization and reduction method is a promising method for the mass production of graphene
and graphene-based composites from graphite. The hydrophobic graphite powder can be changed
to hydrophilic graphite oxide under the influence of strong oxidants, e.g., concentrated sulfuric
acid and potassium permanganate, which break the π bond between the graphite sheets and also
introduce abundant epoxy, hydroxyl, and carbonyl groups [48]. However, the hydrophilic functional
groups introduced disrupt the conjugated sp2 network and degrade the electrical properties of the
graphite sheets [42]. Hence, to enhance the electrical properties, first, the graphite oxide solution is
homogeneously dispersed by ultrasonic treatment to form a graphene oxide colloidal solution, and
then reducing agents are introduced to remove the oxygen functional groups, resulting in a reduced
graphene oxide (rGO). Hydrazine hydrate, hydroquinone, sodium borohydride, and hydrogen sulfide
have been extensively explored as reducing agents. The advantages of the graphite oxide reduction
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method include its low cost, short production time, simple operation, and capability for large-scale
production. More importantly, there are many ways to reduce GO, e.g., hydrothermal reduction [4,49],
chemical reduction [50–53], electrochemical reduction [54–57], solvothermal reduction [22,58,59],
and microbial reduction [23,60]. On the contrary, the low quality, reduced conductivity, and large
defect population of rGO limit the application of these methods. More seriously, the toxicity of some
of these reducing agents is a significant disadvantage.

Qiao et al. [4] used L-cysteine as a reductant to reduce a GO dispersion at a low temperature
(80 ◦C) in an oil bath for 9 h via a chemical reduction method (Figure 1a). 3D graphene hydrogel (GH)
is gelated from a solution of 2D GO sheets and freeze-dried for 24 h to convert it into graphene aerogel
(GA). Meanwhile, rGO was also obtained from the GO dispersion, without any reductant, using
the hydrothermal method in a 50 mL Teflon-lined stainless steel autoclave heated at 180 ◦C for 12 h.
The pore size increased with an increasing ratio of L-cysteine to graphene. When the ratio was 1:13,
the pore size maintained a uniform porous structure (Figure 1d,e). The porous structure breaks up
when the ratio is over 1:13. In addition, the introduction of L-cysteine apparently resulted in an
enlargement of the pore size of GA for the hydrothermal method (Figure 1b,c).
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Figure 1. (a) Schematic illustration of the chemical reduction and hydrothermal methods. Scanning
electron microscopy (SEM) images of graphene aerogel (GA) without L-cysteine (b,c). SEM images
of GA with L-cysteine (d,e). Adapted from [4], with permission from © 2015 The Royal Society
of Chemistry.

To enhance the biocompatibility of MFC electrodes, Zhuang et al. [60] replaced the depleted
medium with a fresh medium containing 1 mL of the GO solution while the MFC had reached a
steady state for electricity generation. When the solution of the cathode reactor turned black, it was
replaced with a fresh medium without GO. Similarly, Yuan et al. [23] utilized the microbial reduction
method to reduce the GO solution in the anode chamber. These bio-electrodes exhibited stronger
electrochemical responses, higher EET efficiency, and improved biocompatibility, which is promising
for MFC applications in bioenergy generation.

2.2. Self-Assembly Methods

Self-assembly is a technology where the basic structural units in solution, e.g., molecules,
nanomaterials, and micron or larger scale substances, can spontaneously form an ordered and stable
structure; it is one of the most common methods of obtaining 3D graphene (3DG) from GO sheets in
homogeneous solutions via the gelation process [46]. In the self-assembly process, the basal planes of
GO sheets spontaneously aggregate due to the increased attractive interactions of the van der Waals
forces, the hydrogen bond and the π-π stacking interaction from the carbon framework, and the weaker
electrostatic interactions from the ionization of the oxygen-containing groups, resulting in an ideal
construction of GH [4,61,62]. The gelation of the suspension of GO sheets can be triggered by many
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methods, such as by adjusting the pH value of the GO solution [50], adding crosslinking agents [63]
or using chemical reduction methods [64]. There are many ways to synthesize graphene sheets from
the suspension of GO sheets by electrostatic interaction using different self-assembly mechanisms;
these include the layer-by-layer assembly method [64,65], the template-induced assembly method [66],
hydrothermal treatment [67], and direct freeze-drying [68]. In addition, the number of graphene layers
and the pore size can be effectively controlled by changing the experimental conditions, such as the
template style, pH value, and concentration of the suspension of GO sheets.

The layer-by-layer assembly method is the main self-assembly technique to synthesize uniform
nanostructure films and it relies on the electrostatic adsorption between oppositely charged species.
Guo et al. [64] introduced carboxyl groups on the surface of carbon paper by a functionalization
process, the carbon paper was then immersed alternately into a positively charged polyethyleneimine
(PEI) aqueous solution (10 mg·L−1) and a negatively charged graphene suspension for 20 min, and the
electrode was washed with deionized water and dried in hot air. This process was repeated several
times, resulting in the creation of a layer-by layer film, which improved the electron transfer ability of
the blank carbon paper anode because of the increased specific surface area and increased attachment
by bacteria.

Ice-segregation-induced self-assembly (ISISA) is a freeze-casting technique that can produce a
series of aligned macroporous or layered materials through a commonly used bottom-up approach.
He et al. [68] prepared vacuum-stripped graphene (VSG) under vacuum and heated it at 250 ◦C
for 5 min. 5 mL homogeneous chitosan (CHI) solutions with amounts of the VSG powder were drawn
into injection syringes, dipped into a liquid nitrogen bath at a constant dipping rate of 5 mm·min−1,
and then freeze-dried to form CHI/VSG scaffolds (Figure 2b). The macroporous CHI/VSG scaffold
formed a thick and multilayered biofilm (Figure 2c,e). On the other hand, the scaffolds prepared
with rGO (noted as CHI/rGO) formed a single-layer biofilm (Figure 2d,f), indicating that the
biocompatibility of this type of electrode is significantly enhanced as a result of the larger surface
roughness of the CHI/VSG scaffolds. In addition, the pore size of the graphene sponges can be easily
controlled by the growth rate of ice crystals.
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2.3. Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a widely applied technique for manufacturing semiconductor
films, where the chemical reaction of a carbon source (e.g., methane [69], ethanol [70], and cyanuric
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chloride [71]) is conducted in a high-temperature, high gas flow rate condition and the resultant
film is deposited on the surface of a heated solid substrate. The main substrates used in graphene
production are transition metal materials, e.g., Cu [72] and Ni [7]. The graphene films obtained can be
transferred to other substrates, maintaining their excellent conductivity and transmittance. Large-area
and high-quality graphene can be synthesized through this process [2], but the high cost and complex
nature of the process limits its use in large-scale applications. Worse still, the quality of the graphene
produced is highly dependent on the substrate.

Yong et al. [70] used a clean nickel foam as the substrate and introduced ethanol as the carbon
source into a tube by bubbling a H2/Ar gas mixture through an ethanol liquid during a 20 min CVD
process. The nickel substrates obtained were etched away with HCl solution (3 M) at 80 ◦C to form
free-standing 3D graphene foams (GFs). Polyaniline (PANI) was then deposited on the surface of the
3D GFs. In a similar manner, Kirubaharan et al. [2] used a plasma-enhanced CVD technique at 1050 ◦C
and at a 10 torr pressure for 1 min to reduce GO sheets in a quartz tube, and they formed the resultant
N-doped graphene nanosheets (NG), whose specific surface area was 579 m2·g−1.

2.4. Template Methods

In general, template methods are combined with the other methods mentioned above, and
modified electrodes are usually prepared using the soft- or hard-template methods with numerous
groups as precursors [73]. The template methods can provide a limited reaction space for growing
graphene sheets. The soft-templates are micelle aggregated by a surface active agent, providing a
dynamic balance cavity [74], and the hard-templates are solid templates, e.g., nanotubes, porous anodic
alumina, and nickel foams [24], providing a series of static pore canals through which the reductants
enter the inside of the template [75]. The template methods have many advantages, such as their low
cost, the environment-friendly nature, the ease for mass production, and the simplicity of the process;
these methods are extensively applied in graphene-modified electrodes.

Krishnamurthy et al. [24] chose nickel foams as a model to prepare a conformal graphene
coating on a Ni surface via template-directed CVD, which can prevent the dissolution of Ni from
microbial byproducts (e.g., H+), though numerous microbial colonies adhere to the nickel foam
coated by graphene (Ni/G). Similarly, Xie et al. [66] used a polyurethane sponge substrate to
prepare graphene sponge composites (GS) via the dipping-and-drying process in graphene ink.
The macroscale porous substrates provided an open 3D structure that increased microbial colonization
(Figure 3a–c). The use of a stainless steel mesh inserted in two pieces of the graphene sponge to form a
graphene-sponge-stainless steel mesh electrode (GSM) greatly reduced the resistance of the composite
electrode from ~180 Ω (GS electrode) to ~22 Ω (GSM electrode).
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Figure 3. (a) SEM image of the graphene sponge (GS) showing the macroscale porous structure and
the graphene surface (inset); (b,c) SEM images of a colonized graphene-sponge-stainless steel mesh
electrode (GMS) after 50 days of operation, at different scales. Adapted from [66], with permission
from © 2012 The Royal Society of Chemistry.

2.5. Other Synthesis Methods

There are many types of preparation methods that can be used to synthesize graphene-modified
electrodes in addition to the four methods above, e.g., the spraying technique [76], the explosion
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method [71], the ammonia-evaporation-induced method [77], the electrophoresis method [55],
electrostatic interaction [21], and the bio-catalytic oxidation process [23]. To investigate the improvement
of electricity generation in MFCs, one or more methods may be used in the production of the electrodes.
Qiao et al. [78] prepared a GO colloid from graphite using a modified Hummers method. A piece of
nickel foam was then immersed in the GO colloid suspension. The resultant graphene oxide/nickel
foam composite film was immersed into an ascorbic acid solution overnight to obtain a graphene/nickel
foam composite film, and the composite film was subsequently freeze-dried for 24 h. The resultant
electrode is referred to as a 3D porous graphene/nickel electrode (Figure 4).
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3. Development of Graphene-Modified Electrodes in Microbial Fuel Cells

There are two typical reactor configurations used in MFC studies. One is the double-chamber
reactor, and the other is the single-chamber reactor [24]. They all consist of two electrodes and an ion
exchange membrane, which separates the anode chamber from the cathode chamber. To evaluate the
operation of MFC, we observe the open circuit voltage (OCV), electrode potential, internal resistance,
power density, current density, coulombic efficiency, and removal efficiency of pollutants. Among them,
a higher OCV value is representative of a higher reaction rate [79,80], and the power density is
dependent on the EET efficiency, the active area of electrodes, the reaction kinetics, etc. The OCV and
the power density are the important parameters for evaluating the operating condition of the MFC.
Although MFC research is still in its infancy, the unique advantages of MFCs have drawn the attention
of many scientists, and efforts are being made to study various aspects, such as their low environmental
impact, large energy benefit, positive societal impact, and stable operation (Figure 5) [81,82]. Moreover,
graphene-modified materials have shown improved performance, as mentioned above, which provides
a good reason for the integration of graphene-modified materials and MFCs. In this section, the design
and applications of graphene-modified electrodes in MFC are reviewed in detail.
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3.1. Design and Development of Graphene-Modified Anode Materials in MFCs

Due to the exoelectrogens attached on the surface of anode electrodes, the anode materials
should not only have good electrical conductivity, anti-corrosive qualities and excellent chemical
stability but also outstanding biocompatibility and EET efficiency. Generally, the nutrient solutions
of the MFC anode chamber are always inoculated with Escherichia coli [2,18,67], Shewanella oneidensis
MR-1 [54,58,70], Pseudomonas aeruginosa [55,83], and anaerobic sludge [23,49,60], which are all anaerobic
bacteria. To prepare excellent bio-anodes, a series of factors should be taken into consideration, such
as the specific surface area, the biocompatibility, the EET efficiency, and the mechanical properties.

3.1.1. Specific Surface Area

While most biological reactions occur on the surface of the anodes, a higher specific surface area of
the anode electrodes provides more space for microorganisms to attach to the anode. In general, a high
specific surface area always reflects two aspects: one is the obvious hierarchical structure (Figure 2c,d),
Figure 6b, and the other is the porous structure (Figure 1d,e). The hierarchical structure exhibited
excellent flexibility, which allowed it to be restored to its original shape without any damage when it
was compressed to half its volume [3]. Based on the size of the pores, the structures can be divided into
micropore, mesopore, and macropore structures. The bacteria growing on the surface of the electrode
scaffolds mainly relied on the macropore structure to enhance the interaction between the bacteria and
electrodes; the micropore and mesopore structures can improve the EET efficiency on the graphene
surface [68].

To control the specific surface area, He et al. [68] obtained a series of CHI/VSG structures by
adding different concentrations of VSG via ISISA. The specific surface area increased with an increasing
concentration of VSG (Figure 6a). However, when the VSG concentration exceeded 70 wt %, the
CHI/VSG scaffolds could be broken. The optimal concentration of VSG was 50 wt % (CHI/VSG-50),
whose remarkable maximum power density was 1530 mW·m−2, a value that was 78 times higher than
that of carbon cloth anodes (19.5 mW·m−2). Chen et al. [3] introduced different freezing rates to control
the size of the ice templates used during the growth. To prepare GS, GH ice crystals were grown
in a small temperature gradient at a low freezing rate in a refrigerator (−10 ◦C), forming a large ice
template. The Brunauer–Emmett–Teller (BET) specific surface area of the GS formed was 55.4 m2·g−1,
which was larger than that for the GF formed at a quick freezing rate in liquid nitrogen (19.9 m2·g−1).
The maximum power density of GS was 0.710 mW·m−2 (compared with 0.476 mW·m−2 of GF).
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In addition, the specific surface area of the crumpled graphene layers with a disordered structure was
579 m2·g−1, approximately 1200 times larger than that of the anode based on graphite (approximately
0.5 m2·g−1) [2,84], and the maximum power density could become as high as 2668 mW·m−2, which
increased by approximately 18 times compared with that of the control groups (142 mW·m−2).
The graphene-modified electrode maintained the excellent property of a large specific surface area,
and numerous microorganisms resided on the macropores, which significantly enhanced the electricity
generation performance of the MFC. To an extent, the large specific surface area is also suitable for the
cathode electrodes to increase the active sites.
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Adapted from [68], with permission from © 2012 American Chemical Society.

3.1.2. Biocompatibility

Due to the biological reaction that occurs on the surface of the anode electrodes, the
biocompatibility of anode electrode materials is essential in determining the power output of
MFCs [85–87]. The biocompatibility of electrode materials can be summarized via two aspects. One is
the shape, size and surface roughness of the materials, and the toxic residues in the manufacturing
process of these materials is the key factor affecting the biocompatibility [88]. The other is the microbial
corrosion effect on these materials [24,89]. To enhance the biocompatibility of anode electrodes,
some surface treatment procedures should be applied, such as heat [90], ammonia [91,92] and acid
treatments [21,64], and electrochemical oxidation [93]. A cell viability measurement is always the
dominant method used to evaluate the biocompatibility of electrode materials [33] by counting the
colony-forming units (CFUs) on the surface of the electrodes [94]. Generally, the electrode materials are
taken out of the anode chamber after the MFC operated for ~60 h, and then they are tested by counting
the viable bacteria growing on the surface of the electrode materials by observing the SEM images [95].
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Most microorganisms are negatively charged, so Guo et al. [64] prepared graphene-modified
carbon paper (CP) electrodes using the electrostatic adsorption reaction between negatively
charged graphene and positively charged polyethyleneimine (PEI) with a layer-by-layer method.
The electrostatic adsorption reaction greatly increased the number of microorganisms attached on the
positively charged graphene-modified carbon paper electrodes. The maximum power density of the
MFC based on this type of anode electrodes reached a value of up to 368 mW·m−2, which was two
times higher than that of the MFC based on unaltered electrodes. Zhao et al. [21] created modified
graphene nanosheets (GNS) with a positively charged ionic liquid on CP (IL-GNS/CP) electrode
to improve the interactions between the anode electrodes and the microorganisms. The number of
microorganisms attached on the IL-GNS/CP electrodes was significantly more than that on the CP and
GNS modified CP (GNS/CP) electrodes (Figure 7). The maximum power density of the IL-GNS/CP
increased to 601 mW·m−2, which is much higher than the value for the control groups. Meanwhile,
Han et al. [95] considered a thermal treatment that could introduce some hydrophilic functional groups
on the surface of electrodes, for instance, C=N–C and N–C=O, and enhance the biocompatibility.
The prominent hierarchical and porous structure of the graphene-modified electrodes makes it possible
to enable microorganisms to attach on both the inside and outside surface of the pores [78].Materials 2016, 9, 807 9 of 26 
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liquid (IL-GNS/CP) (C,F) electrodes before and after S. oneidensis cells attached on the surface of the
anodes. Adapted from [21], with permission from © 2013 The Royal Society of Chemistry.

3.1.3. EET Efficiency

Compared to biocompatibility, EET is a process in which the electrons stored in the substrate
are released by microorganism metabolism and transferred to the surface of the electrodes [70,96].
There are approximately three extracellular electron transfer mechanisms from microorganisms to
electrodes: (1) direct electron transfer based on redox proteins on the bacterial surface, such as
outer-membrane c-type cytochrome proteins (MtrC, OmcA, OmcB or OmcZ) [70,97]; (2) intercellular
“nanowires”, i.e., the electrically conductive pili [55,98]; and (3) indirect electron transfer based on
electrochemically active metabolites, such as riboflavin molecules in solution [23,99]. The active sites
of outer-membrane c-type cytochromes, covered with non-conductive peptide chains, strongly impede
the EET efficiency [100]. As Jain et al. [101] have suggested, the biofilm can be subdivided into three
regions: (1) the dense inner core, the electrochemically active inner core that mainly contributes to the
EET process; (2) the electron acceptor limitation zone, the intermediate zone that contributes partially
to the EET process; and (3) the metabolically inactive zone, the top layer of the biofilms that contributes
slightly to this process. In addition, the outer-membrane cytochrome proteins that accumulate on
the biofilm surface play an extremely important role in the short-distance EET, and the existence of
nanowires is beneficial to enhancing the EET process at long distances [55].
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As shown in Figure 8a, the oxidative/reductive peak separations (4Ep) of the graphene-modified
carbon paper electrodes were smaller than those of the blank carbon paper electrodes, indicating
that the existence of graphene in the anode electrodes improved the EET kinetics between the
outer-membrane cytochrome proteins and the solid electrodes [98]. The EET kinetics parameters,
such as the exchange current density and the transfer coefficient, can be obtained from Tafel plots
(Figure 8b) [102]. To reduce the interfacial charge-transfer resistance and enhance the EET efficiency,
the traditional carbon based electrodes are always modified with graphene because of the excellent
electrical conductivity of grapheme (106 S·m−1) [55,103]. The graphene scaffold acted as an enhanced
nanowire in the composite electrodes, improving the EET efficiency (Figure 8c). Although graphene
has a high electrical conductivity, the GO defects and the gaps between the graphene sheets disrupted
the EET efficiency [1]. For some conducting polymers, metal or metallic oxide was applied in the
preparation of the electrodes. Zhao et al. [57] fabricated graphene-modified carbon paper coated with
a PANI network, which not only significantly increased the active surface area for the immobilization
of microorganisms but also enhanced the direct EET via outer-membrane cytochromes. In addition,
the pore size of the PANI network was less than the pore size of the microorganisms, thus providing
a large surface area for the attachment of microbial secretions and increasing the EET efficiency [57].
Xie et al. [66] inserted stainless steel into two pieces of GS composites. The use of stainless steel
reduced the ohmic resistance from 180 Ω to 22 Ω, forming an electron transport “highway” (Figure 8d).
The low resistance, including a low charge-transfer resistance and a low ohmic resistance, resulted in
the high EET rates [33,54,104].
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Figure 8. (a) Cyclic voltammograms of n-layer graphene composites (n = 0, 1, 2, 4, 6) in aqueous
0.1 mol L−1 KCl containing 10 mmol L−1 K3[Fe(CN)6] at a scan rate of 20 mV s−1. Adapted
from [98], with permission from © 2015 The Royal Society of Chemistry; (b) Tafel plots of the different
cultured anodes. Adapted from [102], with permission from © 2016 The Royal Society of Chemistry;
(c) Microorganisms interconnected via microbial nanowires. Adapted from. Adapted from [66], with
permission from © 2012 The Royal Society of Chemistry; (d) Schematic of the extracellular electron
transfer (EET) pathways in the graphene sponge (GS) electrode with (right) and without (left) stainless
steel. Adapted from [66], with permission from © 2012 The Royal Society of Chemistry.
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3.1.4. Mechanical Properties

Although graphene nanosheets exhibit excellent mechanical properties [105–107] (the breaking
strength and Young’s modulus of defect-free graphene are as high as 42 N·m−1 and 1.0 TPa,
respectively), the mechanical strength of large-scale graphene is not preserved in electrodes for real
applications. To address this situation, a series of measures should be taken. As the electrodes for MFCs,
graphene is always modified on the substrate material [55,57,84,97], such as carbon paper, carbon
cloth, and a stainless steel mesh, via the dipping-and-drying process [1], spraying [49], electrostatic
interaction [21], the explosion method [71], the ammonia-evaporation-induced method [77], and the
utilization of a cross-linking agent [108]. In these ways, the electrode materials not only keep the good
mechanical properties of substrate materials but also introduce the superior electrical conductivity
of graphene. To maintain the porous structure, polyurethane sponge [66], melamine foam [1],
and nickel foam [109] are used as templates to form graphene-modified materials. Xie et al. [66]
prepared a GS electrode using polyurethane sponge as a template. The graphene layers coated on the
surface of the polyurethane sponges were not peeled off after the Scotch-tape test and water flush test
(100 mL·min−1) were conducted for ten minutes. Meanwhile, Chen et al. [3] controlled the temperature
and freezing rate to obtain GA with different pore sizes. GS with a large pore size recovered well
when it was compressed into half its volume (Figure 9a–c), and GF recovered partially (Figure 9e–g).
The compressive stress-strain curves of six cycles of loading and unloading indicate that GS has more
flexibility than GF (Figure 9d,h). The practical application of MFCs becomes possible only once the
mechanical properties of a graphene modified electrode material are enhanced.
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Figure 9. Mechanical properties of graphene sponges (GS) and graphene foams (GF).
Compression-recovery process of GS (a–c) and GF (e–g) after 50% deformation, and the compressive
stress-strain curves of 6 cycles of loading and unloading for GS (d) and GF (h) under constant pressure.
Adapted from [3], with permission from © 2014 The Royal Society of Chemistry.

Many studies suggested that graphene and its composite electrodes enhanced the electricity
generation performance of MFCs. The micron-sized pores of graphene-modified electrodes not
only prevented the blocking created by the attachment of microorganisms but also improved the
biocompatibility and EET efficiency [23,104]. The reasons for the electricity generation performance of
the MFCs were as follows: (1) the macroporous structure of the graphene-modified materials increased
the active surface area, enhancing the interaction between the multi-biofilms and the electrodes;
(2) the macropores provided more surface for the attachment of microorganisms, and the micropores
contained the microbial metabolite that improved the EET ability; (3) the graphene architecture worked
as the nanowires enhanced the electrical conductivity, reduced the polarization phenomenon and
improved the energy exchange efficiency [4,57,68]. Table 1 summarizes the MFC anode electrode
studies reported in recent years.
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Table 1. Summary of microbial fuel cells (MFC) anode electrode studies.

No. S/D
Anode

Membranes Inoculation Cathode Electrode RE/Ω OCV/mV
Power

Density/mW·m−2 Ref.Electrode Modification Volume/mL

1 D 3D GF PANI 150 Nafion 117 S. oneidensis MR-1 Carbon cloth 2000 >250 768 [70]

2 D Graphite felt PPy/GO 25 CEM S. oneidensis MR-1 Carbon felt 500 ~350 1326 [56]

3 D Carbon paper GNRs/PANI 100 Nafion 211 S. oneidensis MR-1 Carbon paper 1000 - 856 [57]

4 D Carbon paper Graphene/Au 100 Nafion 211 S. oneidensis MR-1 Carbon paper 1000 - 508 [97]

5 D Nickel foams Graphene/TiO2 100 Nafion 112 S. oneidensis MR-1 Carbon paper - - 1060 [22]

6 D Carbon cloth Graphene 180 Nafion 117 P. aeruginosa Carbon cloth 1960 ~700 52.5 [55]

7 D Carbon cloth rGO-SnO2 75 Nafion 117 Escherichia coli Pt rod 550 830 1624 [67]

8 D Ni foam rGO 25 - S. oneidensis MR-1 - 100 620 661 W·m−3 [109]

9 D Carbon cloth NGNS 10 Nafion 115 Escherichia coli Carbon cloth 510 ~350 1008 [2]

11 S Glassy carbon Microbially reduced
graphene 10 CEM Anaerobic activated sludge Carbon cloth/Pt 1000 >450 1905 [23]

13 S Graphite block Graphene 100 - S. oneidensis MR-1 Carbon paper 500 150 102 [54]

14 D Carbon cloth PANI-rGO 40 Nafion 117 anaerobic sludge Carbon felts 500 770 1390 [41]

15 D Carbon cloth TiO2/rGO 100 Nafion 117 S. putrefaciens CN32 Carbon fiber brush 1500 - 3169 [58]

16 D CHI/VSG scaffolds Nafion 117 P. aeruginosa Carbon cloth 1960 910 1530 [68]

17 D Carbon cloth Graphene 20 NO Escherichia coli B Carbon cloth - 900 2850 [110]

18 S 3D-Graphene 28 - Previous reactor Carbon cloth/Pt 1000 - 1516 ± 87 [102]

19 D 3D GS aerogels 120 CMI7000 Anaerobic sludge Carbon paper 1000 ~550 710 [3]

20 D Carbon cloth GA 100 Nafion 117 S. putrefaciens CN32 Carbon cloth 1500 ~700 679.7 [4]

21 S Carbon paper Graphene with IL-NH2 - S. oneidensis MR-1 - - - 610 [21]

22 D Stainless-steel mesh Graphene-containing
foam - Nafion 117 S. putrefaciens Carbon paper - ~600 768 [33]

23 D Carbon cloth rGO/PPy - - Escherichia coli - 1000 400 1068 [42]

24 D Carbon paper Graphene 140 CMI-7000 Anaerobic sludge Carbon paper 1000 580 368 [64]
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Table 1. Cont.

No. S/D
Anode

Membranes Inoculation Cathode Electrode RE/Ω OCV/mV
Power

Density/mW·m−2 Ref.Electrode Modification Volume/mL

25 D Polyurethane GS - - Previous reactor Carbon cloth/Pt 475 - 1570 [66]

26 D Stainless-steel mesh Graphene 115 Nafion 112 Escherichia coli Carbon paper - 790 2668 [84]

27 S Ni foam 3D rGO 20 - Escherichia coli K12 Carbon caper/Pt 1000 623 897.1 [85]

In the second column, “S” is for the single-air cathode MFC and “D” is for the dual-chamber MFC including the “H style” MFC. “-” means that it is not mentioned in the research. In
the fourth column, “NO” represents membrane-free, and CEM represents cation exchange membrane. RE means the external resistance.



Materials 2016, 9, 807 14 of 28

3.2. Design and Development of Graphene-Modified Cathode Materials in MFCs

Although the biodegradation process occurred in the MFC anode chamber, the output power
depended, to a large extent, on the oxygen reduction reaction (ORR) in the cathode chamber. Platinum
(Pt) is always used as the catalyst in the cathode reaction because of its small overpotential, but its
high cost has hindered its use in large-scale application MFCs [73]. Thus, it is essential to manufacture
high-activity and low-cost cathode materials. In addition, the electricity generation performance
of MFCs is affected by electron acceptors, such as oxygen, potassium ferricyanide, and potassium
permanganate. Among them, oxygen is deemed to be an ideal electron acceptor at the MFC cathode
because it is easily accessible from air. Graphene-modified materials provide a large number of possible
active sites and strengthen the reduction pathways.

3.2.1. Reduction Pathways

According to the catalytic ability of the cathode catalysts, ORR always proceeds via a 4-electron
pathway with noble metals, such as platinum and palladium (Pd), as the catalysts, or a 2-electron
pathway with non-noble metals, such as carbon based materials, as the catalysts [50]. The electrons
coming from the anode electrodes can be accepted by the cathode electron acceptors, including nitrate,
chromium, and ferricyanide. Among them, O2 is the most preferred electron acceptor because of its
low cost, ubiquity and high standard potential. There are two different mechanisms to understand
how O2 is reduced into OH− [111,112]: (1) a direct reaction can proceed between O2, electrons and
protons via a 4-electron pathway (Equation (1)); (2) an inefficient 2-electron pathway can proceed with
HO−2 as the intermediate product (Equation (2)), followed by the reduction of HO−2 (Equation (3a))
or a disproportionation reaction between HO−2 and the solution (Equation (3b)). The hydrogen
peroxide production, with a high overpotential, not only increases the energy loss but also damages
the membrane separating the anode and cathode chambers [113].

O2 + 4H+ + 4e− → 2H2O, Eθ = 1.229 V vs. SHE (1)

O2 + H2O + 2e− → HO2
− + OH−, Eθ = −0.076 V vs. SHE (2)

HO2
− + H2O + 2e− → 3OH−, Eθ = 0.878 V vs. SHE (3a)

2HO2
− → 2OH− + O2 (3b)

The ORR pathway can be explored through cyclic voltammetry curves and polarization curves [50].
The electron transfer number of ORR can be calculated from the slopes of Koutecky-Levich (K-L) plots
by the followed equation:

1
i
=

1
ik
+

1
id

(4)

id = 0.62nFAν−1/6CO2 DO2
2/3ω1/2 (5)

where i is the measured current density, ik is the kinetic current density, id is the diffusion limiting
current density, ω is the rotating speed of the disk electrode (rad·s−1), n is the number of electrons
transferred per oxygen molecule in the ORR process, F is the Faraday constant (96,485 C·mol−1),
A is the area of the disk electrode, DO2 is the diffusion coefficient of O2, ν is the kinetic viscosity of the
electrolyte, and CO2 is the bulk concentration of O2 [114,115]. The modification of heteroatoms over
the graphene sheets produces asymmetric spin densities, atomic charge densities, and mass defects,
which generate a large active area on the surface of graphene sheets [116]. Nitrogen-doped graphene
(NG) has shown an excellent electrocatalytic activity and a long-term stability [71]. According to
Equations (4) and (5), the electron transferred (n) for ORR was calculated to be 3.87 ± 0.04, which is
extremely close to the value from the 4-electron transfer pathway of the H2O product, indicating that
the ORR on NG proceeded via a combined pathway involving 2-electron and 4-electron processes
(Figure 10) [50].
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In addition, the type of the N species used makes a difference in the nitrogen-doped materials [117].
Graphitic N can reduce O2 to H2O2, via adsorbed HO2

− as the intermediate through a 2-electron
pathway, while pyridinic and pyrrolic N species can reduce the adsorption energy of O2, which can
convert the ORR mechanism from a 2-electron dominated pathway to a 4-electron pathway [50,118].
Hence, a high content of pyridinic and pyrrolic N may strengthen the ORR mechanism of NG through
4-electron pathways. In considering the high catalytic performance of α-MnO2, Khilari et al. [113]
demonstrated that graphene-supported α-MnO2 had a similar behavior to Pt as a catalyst for the
4-electron pathway of the ORR mechanism, and the performance of MFC-based graphene-supported
α-MnO2 was comparable to that of the Pt/C electrode in terms of OCV, maximum power density,
and COD removal. The low interfacial charge-transfer resistance helped to reduce the overpotential
of ORR. Studies suggested that metal, metal oxide, and conducting polymers anchored over the
surface of graphene enhanced the ORR activity by increasing the active sites of the graphene
nanosheets [45,116,119].

3.2.2. Active Sites

Although Pt exhibited a high catalytic performance as an optimal catalyst, the components of
wastewater can damage the stability of Pt cathode electrodes [111]. OH− and Cl− in wastewater
were adsorbed on the surface of the cathode electrodes; they occupied the active sites, leading to
the disconnection between O2 and the electron coming from the anode chambers via the external
circuit [120,121]. Due to the pyridinic and pyrrolic N in NG that can reduce the adsorption energy of
O2, the NG electrodes with a high nitrogen content and a porous structure provided more active sites
to facilitate the oxygen reduction, exhibiting a higher electrocatalytic activity towards ORR [79,122].
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The interlayer spacing between the graphene nanosheets can be expanded in the redox reaction, which
provided a much larger catalyst surface area and increased the catalytically active sites. In addition,
the macro and mesopore structure of the graphene material were beneficial for oxygen transfer, which
made it easy for oxygen to reach the catalytically active sites, leading to a decrease in the diffusion
resistance; the micropores also provided additional active sites for ORR [79,111,123].

Furthermore, the O species can also impact the long-time stability of NG in a neutral pH medium.
The negatively charged C-N groups that behaved as active centers for ORR can be destroyed in the
long run, which resulted in the decline of the active sites. However, the high content of positively
charged O-H groups can potentially improve the proton-tolerance ability during long operation
times [50,55]. Hence, the O-H groups can prevent the C-N groups from being destroyed (Figure 11).
The functional groups that act as conductive active sites on the surface of electrodes, such as C≡N,
C=O, O-C and C-O-C, can decrease the activation energy barrier by reducing the electrode double-layer
thickness [124]. Metal, metal oxide, and conductive polymers modified the graphene material and
improved the number of active sites [116]. However, some studies shown that the Fe element can
only promote the formation of active centers, but it cannot function as an active center site [76,125].
In addition, the large surface area of graphene materials can provide additional active sites, which can
enhance the ORR catalysis [111]. In the operation of MFCs, the catalysts may lose their active sites via
a severe surface oxidation reaction, leading to the corrosion of the electrode surface.
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3.2.3. Electrical Conductivity

Compared with the anode electrode, there are no microorganisms attached on the surface of
the cathode electrode, except for the MFCs that use aerobic microorganisms as electron acceptors.
Therefore, the preferred method for enhancing the electrical conductivity is to improve the surface
modification of the electrodes. Although pure graphene nanosheets have excellent electrical
conductivity [103] (106 S·m−1), the defects and functional groups on their surface can decrease the
electrical conductivity [19], which limits the overall performance of MFCs. Electron transfer should
be conducted through the triple phase boundary reaction [126]. A high electrical conductivity shows
that the overall inner resistance of the MFC decreased, assisting an effective electron transfer between
the electrodes and electron acceptors [116]. To reduce the cathodic ohmic loss, effective ORR catalysts
should be modified on cathode materials such as SnO2, Ag, PANI, and the P element [53,127–130].
The electrical conductivity can be measured by using a four-point probe system [49,131].
Nitrogen-doped graphene materials exhibited excellent electrical conductivity in the bulk graphene
materials, and the electrical conductivity of NG cathodes was 35 ± 3 S·cm−1, which was 10 S·cm−1

lower than the conductivity of cathodes based on Pt/C [71]. The NG catalyst showed a much better
electrocatalytic activity and improved long-term operation stability for the ORR process than the Pt
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catalyst [119]. Similar to the N element, the electronegativity of the P element is less than C, which can
enhance the positive charge density, resulting in more active sites for the adsorption of oxygen [130].

Conductive polymers, such as polypyrrole (PPy) and PANI, possess an extended π conjugation
along their backbone, indicating their high electrical conductivity and electron affinities [111,116].
Ren et al. [51] doped graphene into PANI to ameliorate the cathode performance. Although MnO2

has a considerable catalytic activity for the electrochemical ORR, the poor electrical conductivity of
MnO2 (10−4–10−5·S·cm−1) limits its application in MFCs [49,53,113]. The strong interaction between
MnO2 and graphene material improved the electrical conductivity to 0.09 S·cm−1, and the maximum
power density of the MFC based on this cathode materials increased to 3359 mW·m−2, which was
much higher than that based on the traditional Pt/C catalyst [49]. In addition, to reduce the overall
resistivity of MFCs, multiple factors, such as the electrode conductivity for both the anode and
cathode electrode), electrolyte conductivity, membrane conductivity and mass transport, should be
improved [132]. Furthermore, the electrode distance and the electrode overpotential should also be
reduced; the use of electron acceptors and electrolyte acidification should also be taken seriously.

3.2.4. Electron Acceptor

The electron acceptor is considered to be one of the most important factors in overcoming the
potential losses in the cathode chamber. Electron acceptors can be divided into inorganic electron
acceptors (oxygen, nitrogen-containing compounds, and metal-containing ions) and organic electron
acceptors (azo dyes, nitrogenous aromatic compounds, and chlorophenols) [133,134]. Figure 12 shows
the redox potential (vs. standard hydrogen electrode) of various electron acceptors. Among them,
oxygen is known as the most sustainable and suitable electron acceptor due to its low cost, high
redox potential, and availability in the environment. Therefore, the air-cathode single-chamber MFC is
commonly used to utilize the oxygen in air [18,135]. However, the leakage of oxygen from the cathode
chamber to the anode can poison the anaerobic bacteria in the anode chamber [20]. To use the oxygen
in the air directly rather than through aeration, the air cathode is the best choice; it is manufactured by
pressing wet-proof gas diffusion layers, the catalyst layer, and the cathode electrode [79].
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To reduce the overpotential of electron acceptors and maintain a steady cathode potential,
Yong et al. [70] filled the cathode chamber with 0.5 mM K3[Fe(CN)6] to study the effect of
polyaniline-hybridized 3D graphene on the anode performance. There are two problems to be
faced when these nitrogen-containing compounds and metal-containing ions are used as electron
acceptors: (1) the catholyte has to be exchanged regularly, which is a waste of resources; (2) the
exhausted catholyte can act as a new contaminant. The cathode chamber can be inoculated with
aerobic activated sludge [136]. Studies indicated that the maximum power density of MFCs based
on the graphene-biocathode increased by 103% compared with the MFCs based on the carbon cloth
biocathode, and the electron acceptor of these MFCs was oxygen supplied to the cathode chamber
with an air pump [60]. Because the MFC based on biocathodes can function with a high efficiency, a
new-style microalgae MFC has appeared; it has the capacity to convert solar energy into electricity
via the metabolism of photosynthetic microorganisms [137]. The use of membrane-less MFCs based
on biocathodes shows a remarkable achievement with a 24 h hydraulic retention time, in which the
rate of the removal of COD and NH+

4 approached 90% and 99%, respectively [138]. In the future,
aerobic biocathodes can utilize inorganic compounds, such as nitrate, sulfate, and iron, in wastewater
as terminal electron acceptors [139], which provides a new way of degrading inorganic salt.

Although degradation of organic matter occurred in the anode chamber, the electron acceptor is
in the cathode chamber, and the electron acceptability and consumption ability can affect the oxidation
rate in the chamber to a large extent. Hence, it is essential for the cathode electrode to have a high
electron transfer capability and fast ORR rate [51]. Due to the outstanding electrical conductivity and
high specific surface area of graphene and its compounds, the active sites of the cathode materials
are sharply increased, which results from the increased mutual contact between the catalysts and
electrolyte, indicating that a high electron transfer efficiency and a low inner resistance. Table 2 shows
the summary of studies on the MFC cathode electrodes reported in recent years.
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Table 2. Summary of MFC cathode electrode studies.

No. S/D
Cathode

Membranes Inoculation
Anode

External
Resistor/Ω OCV/mV

Power
Density/mW·m−2 Ref.Electrode Modification Electrode Volume/mL

1 D Carbon paper NG Nafion 117 Activated sludge Carbon cloth 100 1000 650 776 ± 12 [50]

2 D Glassy carbon Fe- and N-functionalized
graphene Nafion 117 Previous reactor Carbon felt ~30 1000 570 885 [76]

3 S Carbon paper MnO2-NTs/graphene Nafion 117 Previous reactor Carbon cloth 60 1000 613 4.68 W·m−3 [113]

4 S Carbon cloth Pt-Co/G NO Previous reactor Carbon cloth 27 1000 710 1378 [135]

5 D Carbon cloth Graphene/biofilm Nafion 117 Anaerobic
activated sludge Carbon cloth 10 1000 390 323.2 ± 21 [60]

6 D Carbon cloth NG NO Previous reactor Carbon fiber brush 20 1000 555 1350 ± 15 [71]

7 S Stainless steel net NG - Anaerobic sludge Carbon brush 200 1500 243 1159.34 [79]

8 S Carbon Paper Fe-NG CEM Anaerobic
activated sludge Carbon felt 40 500 242 1149.8 [119]

9 S Stainless steel net MnO2/GNS - Anaerobic sludge Carbon felt 200 1500 771 2083 [53]

10 S Carbon cloth α-MnO2/GO Nafion 117 Sewage sludge Carbon cloth 25 - 710 3359 [49]

11 S Stainless steel mesh Cobalt sulfides/GO NO Previous reactor Graphite fiber 28 1000 620 1156 ± 18 [140]

12 D Carbon cloth NG/CoNi-alloy CEM - Carbon brush 140 1000 ~700 2000 [141]

13 S PANI Graphene NO Residual sludge Graphite 1800 500 640 99 [51]

14 D Carbon cloth rGO particles Ultex CMI
7000 Anaerobic sludge Carbon brush 120 1000 650 3.3 W·m−3 [52]

15 D Carbon paper Graphene with Iron
tetrasulfophthalocyanine. Nafion 112 Escherichia coli Carbon paper 115 - - 817 [45]

16 S Carbon cloth Graphene/Pt NO Escherichia coli Carbon cloth 75 1000 ~260 0.159 [18]

17 D Carbon cloth NG - - Carbon fiber brush 120 - 840 4.06 W·m−3 [142]

18 D Graphene-Au-laccase hybrid PFSA
NRE-211 Trametes versicolor Graphene-Au - - 1160 1.96 mW·cm−2 [6]

19 S Carbon paper Graphene/PANI - - - - - 593 17.95 [143]

20 D Graphite rods Prussian blue/graphene Nafion 117 Previous reactor Graphite rods 80 1000 530 15.63 W·m−3 [144]

In the second column, “S” is for the single-air cathode MFC and “D” is for the dual-chamber MFC including the “H style” MFC. “-” means that it is not mentioned in the research. In
the fourth column, “NO” represents membrane-free, and CEM represents cation exchange membrane.
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4. Conclusions and Outlook

Although a series of challenges faces the practical application of MFCs, the development of
MFCs for wastewater treatment has concerned many researchers for a long time. There has been
undeniably great progress in enhancing the performance of MFCs, and various reactor configurations
have been designed to explore the operating principle of MFCs, e.g., H-shaped MFCs [78], air-cathode
single-chamber MFCs [20,79] and single-chamber membrane-free MFCs [18]. The reactions all occur on
the surface of electrode materials, whether the microorganism catalytic degradation of organic matter
in the anode chamber or the ORR of the electron acceptor in the cathode chamber. Hence, the excellent
properties of electrode materials are the essential factor in determining the electricity generation
performance of MFCs, which is significant for their practical application. Due to the excellent physical,
chemical, and biological performance of graphene and its compounds, as mentioned earlier, they have
gradually become one of the most popular materials in MFC research. In this review, we have shown
that 3D porous graphene-based materials have a higher specific surface area, an improved electrical
conductivity, and a more outstanding catalytic performance than traditional materials such as carbon
paper, carbon cloth, and graphite particles, which indicates that graphene and its compounds are the
ideal electrode materials in MFCs. With the use of modified graphene in the anode chamber, large
defective sites are produced on these materials, enhancing their catalytic performance and electron
transfer ability and reducing the polarization phenomenon. In the cathode chamber, the superior
active sites and the hydrophilicity of graphene-modified materials are beneficial for the interconnection
between the catalyst and the electrolyte; this interconnection can improve the ORR rate. The major
areas for future studies are to develop the affordability, superior electrical conductivity, high catalytic
activity, and outstanding biocompatibility of 3D graphene materials.

In the operation of MFCs, multiple purified exoelectrogens were separated from anaerobic sludge,
such as Escherichia coli, Pseudomonas aeruginosa, and Shewanella oneidensis MR-1 leading to the situation
that the mechanism of action among these purified exoelectrogens was not clarified (i.e., whether they
act by synergistic effect or inhibiting effect), which is important to enhance the performance of MFCs.
Partial exoelectrogens have a good electricity generation ability in alkaline condition that enables
their use in some conductive compounds, such as PANI, which could then be developed as a new
technology to address the alkaline industrial wastewater. In addition, the use of expensive membranes,
such as Nafion 117, severely limits the practical application of some MFCs. Therefore, developing a
membrane-free MFC or seeking alternative mediator materials, such as salt bridges, instead of these
costly membranes could significantly reduce the construction cost of MFCs. To improve the utilization
efficiency of oxygen, the cathode can be designed as a biodegradation reactor, such as an aerobic
biological reactor in sewage treatment plants, which can effectively accept the electrons coming from
the anode chamber while degrading contaminants in the wastewater.

The study of MFCs is an interlaced subject, built on the basis of physics, chemistry, and biology.
MFCs can be combined with other technologies, such as membrane bioreactor (MBR) technology
that can not only enhance the electrical generation performance but also increase the removal rate of
contaminants [145]. In addition, power management systems (PMS) that harvest energy are crucial
for the scale-up and practical application of MFCs [146]. However, there are many factors that impact
the electrical generation performance of MFCs, for instance, the external resistance, nutrient solution
system, microorganism species, and electrode materials. Hence, it is difficult to compare systems to
determine which one is better than the others. With the further development of graphene-modified
MFCs, a steady operating MFC system can be developed to evaluate the performance of MFCs. Overall,
graphene and its compounds, as the ideal electrode materials, increase the performance of MFCs, and
they can serve as the core technology needed to address organic wastewater in the future.
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