The race for what's left to achieve what's possible

In the not too distant future...

When the pressure mounted on humanity to turn the world economy on a dime to avoid catastrophic climate heating, many people, institutions, corporations and other business entities tried to scramble to the top of the energy mountain and use what fossil energy was left to secure their own nests.

A decentralisation movement took over the low energy ground. The people on top of the mountain became stranded and increasingly isolated. Pressure from below resulted in a grand compromise never seen before on Earth.
It was in everybody's interest to drawdown greenhouse gases and restore a safe climate.  Financial and opaque barriers were broken by cryptocurrency using 'Proof Of Stake' algorithms on a low-Carbon blockchain. Global internet was deployed by 2025 by SpaceX. Information became accessible to almost everyone on the planet with a simple internet chip built into their smartphone. Coal stations were shut down due to intense pressure from climate activists both on infrastructure and on the corrupt political institutions that supported it.

Technology, including appropriate technology, developed rapidly following new information flows.  Living standards were raised globally however during the 'great transition' many people became environmental refugees and most of these refugees had small Energy/Carbon/Water/Chemical footprints. Refugee camps sprouted up all over the planet and became semi-permanent to permanent. Disease quickly spread throughout the camps so it was essential that biochar was used to filter water (in addition to boiling) and purify soil used for production of culinary and medicinal plants (via it's many benefits to soil including increased soil fertility, Water Holding Capacity, soil porosity, Cation Exchange Capacity and Carbon sequestration).

The camps became apptech incubators - new tech was imagined and built on a daily basis by refugees with support from aid and development sources. '' became the Costco of cheap affordable apptech - TLUD stoves became a popular way to cook food (and boil water) since Carbon credits known as 'Carbon Removal Certificates' were able to generate NORI cryptocurrency tokens, which could be exchanged as currency between refugees however bartering became the most common resource transaction. 'The Energy Kit' became popular which included a TLUD stove with USB centrifugal fan, power bank/torch, semi-permanent LED lighting, and solar panel.  Xiaomi became King of cheap, large, well specced and low power smartphones. Tablets, laptops and desktops became a thing of the past.

More organised efforts, some likened to the Marshall Plan such as '', sprung up and spanned the global economy. Some countries, mostly Socialist ones, created their own green plans. China led the way in Asia but much of their effort was undoing the damage that fast and dirty industrialisation had caused in the 1990s and 2000s. Most green ideas revolved around retrofitting people's homes and workplaces with efficient tech, apptech, greentech et al Factories were retooled to produce renewable energy tech, workers transitioned from old, unsustainable and dirty industries. Coal, oil and gas became less available than before (read 'The race for what's left') and in many cases new apptech could be built without that resource anyway. Many of the waste resources from 'fossil fuelled' Civilisation were employed in apptech, such as Earthships and Permachar Wicking Barrels.  Permaculture became the dominant design system for sustainability but meanwhile the planet was still in decay...
The 'lungs of the planet' and 'medicine cabinet', the Amazon rainforest, continued as a war zone as forest enforcers battled with illegal loggers. Reforestation projects ('Terrestrial Carbon') took place in a number of areas such as Southern Peru, but as the cloud forest dried up due to increasing atmospheric temperatures and illegal logging, it became harder and harder to build new forest due to reduction in rainfall and increasing numbers of wildfires.  The tree planters kept planting regardless, driven by a vision of hope, prosperity and culture.

The oceans acidified due to the increased amount of 'Blue Carbon' absorbed into the sea water. Reversal of acidification would take millenia. Healthy coral reefs became a rarity, where most either disentegrated, got taken over by pests such as 'Crown of Thorns' or bleached from increased sea temperatures. The biggest problem became phytoplankton unable to effectively calcify it's miniscule exoskeletons due to acidification. With a gradual collapse of the bottom of the food chain, populations of most species began to collapse. Sea kelp farming became popular as did ocean aquaculture.  As fishery stocks collapsed, black soldier larvae became a popular source of protein as a substitute for fish meal in terrestrial aquaponic systems.

Snow caps, glaciers, icebergs and permafrost continued to melt. The permafrost melting exposed biomass that would break down due to increased microbial activity and realease vast quantities of methane (which is arguably 23+ times more potent as a greenhouse gas compared to CO2). Additionally, frozen methane clathrates in the sea beds also continued to melt releasing massive amounts of methane gas. Consequently, river flows reliant on glacial melts decreased affecting massive numbers of people dependent on irrigation for agriculture along the rivers. Sea level rises, mostly from icebergs melting, affected many mega-cities built along the coastline. In some countries such as Bangladesh, people became trapped as they tried to go to higher ground. The temperature increases from permafrost and clathrate melting added to the feedback into the climate system warming and only accelerated the melting.

Superstorms became the norm of extreme weather. Florida became deserted.

The key to the lock was limiting global temperature increases from pre-industrial times to 1.5 degrees Celsius. If higher increases were reached eg. 2 degrees Celsius and emissions were not controlled to limit further temperature increases, the planet's climate system would uncontrollably tip into 5 degrees and stabilise there. In this scenario, only about a billion people would survive and most species would die. If humans continued to add climate emissions then the climate could tip over into 10 degrees of warming increase. GAME OVER.
Or was it GAME OVER? What if we could stabilise the climate at around 1.5-2 degrees. What if humanity 'got it's shit together' and collaborated on the mother of all 'complex wicked problems' - climate change? What if world peace could be cemented through this collaborative effort? What if apptech could be the driver of this change? Is this what people like Buckminster Fuller and E.F. Schumacher imagined for the future? A world where everyone could meet their basic needs while at the same time steward the climate and all of the other Earth Systems - biological, chemical and geophysical?


Write a comment

Comments: 0