Carbon offset V Carbon reduction

In my opinion, offsetting and removal are often mixed up or interchangeable words. Offsetting is Carbon emissions neutrality. Removal is Carbon-negative. In the case of, they are using, and I don't like the acronym, called CORC (similarly named like Nori's 'CRC'), which stands for Carbon dioxide (CO2) removal certificates. This is good for businesses giants like Microsoft because you can be removing Carbon while you're using your production line to do whatever you want to do with it. In the case of ECHO2/'Holla Fresh' herb production greenhouse, it was providing services (heat/power) while producing biochar (another service), which not only offsets Carbon pollution from the fossil fueled system, it is also removing the Carbon from the atmosphere/climate via woody waste. So it's both offsetting and removing CO2 equivalent emissions.


In the case of the Kon-Tiki 'Rolls', although there are less cogeneration opportunities than the ECHO2 at this stage (I'm waiting for TEGs to go down in price), the biochar produced when used in a growing system is still offsetting Carbon by reducing the amount of fossil used in the system, which may include no-till agriculture (using compressed air biochar injection), less pesticides and herbicides and less fertiliser (most of these use fossil in their production eg. Natural gas to produce fertiliser). Carbon reduction is definitely happening since the biochar is taking Carbon indirectly from the atmosphere via biomass feedstock and locking into a supply chain or directly into soil. I'd be interested to learn what people think about any of this!






This is a 'mind map' of an 'open source' 'climate plan' for a 'climate emergency' with 'targets'

Read More 0 Comments





Aussie wish list for the future

Read More 0 Comments





Production line scaleability

It's a problem I'm facing right now. Centralised battery megafactories V decentralised, open source and small scale production lines. So what we've got is locked in technologies for 10 years with a battery megafactory in Queensland - there will be more. The only thing it offers is higher temperature performance Li ion batteries compared to the rest of the pack - which is appropriate for predicted global average temperature increases but it's still Li ion - mined (presumably in Australia) and highly toxic when released into the ecosystems at the end of their life. Could the batteries be recycled/upcycled at the end of their life? What about the logistics of this? It seems that there is neither cradle to grave sustainability or circular economy happening here. They want to break into many markets including the South Pacific market but at the end of the day they have no clue how money poor (and culturally rich) many of these communities and people are. Could people afford to buy the batteries? Probably not. Inappropriate technology.

So, my alternative approach might be decentralised open source production lines to produce solar generators (basically batteries with ports and a solar regulator for charging from a solar panel). The Marxist in me wants people who want affordable and sustainable solar energy storage to be able to produce their own. But, the real question is are there any sustainable biomass/feedstock sources in the South Pacific that won't produce more ecological issues eg. land clearing, destruction of coral reefs, food for biomass. It may not be possible to grow kelp due to the sometimes rough seas and an increase in megastorms would need to be considered.  Limited freshwater supply is another consideration for growing feedstocks, though solar desalination is always a possibility too.  With Starlink global internet going online soon, I imagine there will be exponential demand for ways to power smartphones and computers eg.laptops and provide lighting for study. The CharTron concept may well take off (see 'Project Golf Buggy' page)!

Watch this space






A new greentech start-up funding model

So, the problem of Government and VC money for greentech and possibly other start-ups seems to be at the R&D stages and not necessarily the commercialisation stage.
In the current dominant model, dollar for dollar funding is often provided by Government when you want to commercialise a prototype of something after a whole bunch of red tape.
Now that we are in the worst recession the planet has ever had since probably the beginning of capitalism, and we've got climate change which isn't slowing down despite all the reductions in travel commutes and domestic and international air travel, we need to innovate to create more 'Green collar' jobs. So, we need to redefine the funding model to make it easier for greentech start-ups to access capital right at the beginning when the first design concept and plan/strategy is formed. The old models of VC capture and Government funding needs to change.
I've broken down the new funding model into 3 steps:
1- Research for the prototype
2-Development of the prototype
3-Commercialisation of the prototype
I would argue that money 'invested' at steps 1 and 2 is far more valuable than money provided at Step 3.
In other words, less money will be needed to commercialise an idea compared to the old model of dollar for dollar or VC at step 3 - often where it's least needed..
With this new model, way more start-ups will be possible and commercialise more quickly. This is particularly important for technology start-ups because the game is changing so quickly now with new art/science/design innovations and breakthroughs that are happening at breakneck speed all over the planet.
In other words, if the R&D steps take a long time (or don't even make it to Step 3), the technology will probably be superseded by better technology elsewhere by the time, or even before, it reaches commercialisation.
Robot production lines sound exciting and futuristic but aren't suitable for every technology and business model.
Space and Defence are great growth areas and will create many jobs (along with locked up IP), with the potential  to develop greentech and make their IP open source, though I doubt that will ever happen on a large scale. Either way, I believe even more jobs will be created in greentech over the long-term (sorry, no modelling data) so we should be investing heavily in this area for the future circular economy.






The shortest 'Green Hydrogen' blog

C'mon ?fellas, why not a billion bucks during a recession for ARENA to invest in 'Green Hydrogen' projects with a focus on sustainability, scaleability (micro-electrolysis to macro-electrolysis), efficiency, durability and modularity??

PS. Maybe add some seed funding for sustainable seaweed eg.kelp farming at Port Lincoln?

Why? The seaweed would be harvested, pyrolysed and added to ammonia (NH3) from the prototype 'Green Hydrogen' plant to make slow release fertiliser with surface area off the charts (3487m2g-1)* for microbial housing, Mycorrhizal Fungi (that collects the nutrients and minerals from the 3D biochar matrix and delivers them to the plant roots) and whatever else the farmer/gardener needs to add for tuning their soil?

PPS.Biochar seaweed eg.kelp could be a suitable candidate for Hydrogen storage tanks too since it has enormous surface area with highly tunable porosity and surface chemistry for H2 binding sites that allows higher storage density compared to, say, a Carbon fibre tank with nothing inside.

Read More 0 Comments





The 'Adventure' outback vehicle

Hybrid electric/Hydrogen vehicle suitable for the Australian outback (and Australian built and sold exclusively to Australians) with practically 'almost' unlimited range
Eg. The 'Adventure', with a similar size footprint to a Troopy which allows for on and off-road stability, passengers, luggage and the energy systems

Eg2. The hybrid electric/Hydrogen 'Adventure' 4WD ute with solar panel tray cover and inbuilt H2 pump and H2 storage

This could also be a prototype for a Mars vehicle...


2 ways to power the engine

1- Hydrogen fuel cell (HFC)

2-'Flash graphene' supercapacitor


2 ways to utilise solar power

1-Micro-electrolysis for H2 production (onboard/on the 'H2 extender' trailer)

2-'Flash graphene' supercapacitor charging


2 ways to externally 'charge' the vehicle

1- Electric power terminals eg.The 'Chargefox EV'

2-H2 pumps

A network would need to be built in the Outback OR independent power and H2 production, onboard the vehicle or via and 'H2 extender' trailer (see below)


More info about the technology...



-vehicle covered with flexible graphene/buckyballs/Perovskite PV cells embedded into a lightweight UV resistant biochar-based biocomposite for the vehicle body (biochar could be produced from a local sustainable feedstock source with a Kon-Tiki 'Rolls' biochar kiln)
*When it's sunny/moonlit, Hydrogen is made (and when the tanks are filled, supercapacitor charging)
*When it's overcast/raining, power is drawn from supercapacitor
*Can directly charge the supercapacitor from PV cells if the H2 system fails



-onboard water tank for micro-electrolysis/emergency water

-onboard (extremely stable) micro-electrolysis using biochar (?suitable feedstock) as a catalyst for Hydrogen Evolution Reaction (HER)

-onboard H2 tanks, filled with seaweed eg.kelp biochar (with hydrothermal activation) with modified surface chemistry) for increased H2 binding sites resulting in higher storage energy density
-HFC (including bamboo biochar (with hydrothermal activation) electrodes doped with Si from bamboo leaves) that can either charge the supercapacitor or directly power the engine


Additional power for the supercapacitor
*Regenerative braking and suspension eg.coil (H2x IP)


-Desert-proof electronics (rugged IP69K eg. shock, temperature, dust, water resistant), made in Oz eg. Bloody reliable graphene sensors and terminal welds

-Kick arse basic AI to monitor the vehicle (Raspberry Pi 4 with 'CarPiHat' running on a 8" touchscreen with 'UBPorts', which is at the experimental stage), eg. make H2 from the PVs; discharge the supercapacitor when H2 is running low and not enough PV electricity for micro-electrolysis

-if the Raspberry Pi 4/CarPiHat fries (it's only getting hotter out there), should be able to remove it from the dashboard and slot in a spare Raspberry Pi 4/CarPiHat (found in the box of joy)

-Navigation? Probably the 7" Garmin "Overlander" (colour, touchscreen, rugged) for on-road and off-road navigation, from Johnny Appleseed (currently on sale). They also sell the Garmin InReach "Mini" that can be paired to the "Overlander" for messaging and SOS distress calls over the Iridium network - just need to sign up to a plan, which will vary depending on what your needs are...



-extremely reliable electric engines with 2WD and 4WD options, Low range and high range


Other features

-Aircon and heating

-Fridge -food/tinnies

-Bang & Olufsen sound system



-an electric engine that can be maintained as easily as a Troopy diesel engine
-a box of (joy) spare electronics (eg.spare graphene sensors, wires, Raspberry Pi 4) that can easily replace faulty electronics in the energy systems


Read More 0 Comments





Solar ovens

Read More 0 Comments





Renewables, anyone?

A non-exhaustive list of what to consider for 'Appropriate Technology' design. Note that it's difficult to prioritise design principles as emphasis on each principle will vary depending on the technology. It's hard to imagine that any single technology would tick all the boxes:

The 12 Permaculture Principles

Pattern Dynamics

Ecological sustainability



'Small is beautiful' (big can be beautiful too...)





Cultural need/sensitivity

Commercial viability




STEM (?'Fact' eg. How long is a piece of string?)

Science-Art 'Philosophy'

Energy footprint
Carbon footprint
Water footprint
Chemical footprint
Ethics (?'Faith' eg. 1987 Brundtland Report definition for Sustainability)
Creates green collar jobs ('Green Economics')

Local supply chains, production and deployment
High standards eg.Solar Impulse Foundation

Ease of maintenance








Ease of operation


Cogeneration opportunities

Transparency (eg.political, corporate, dashboards for sensors et al)


Rugged (depending on the application)

Lightweight (good for mobile applications and also good for logistics)

'Green' materials (eg. 'Green steel', biochar-based biocomposites, bamboo, hemp et al)

High energy density (for energy carriers/fuels and storage)

Solid state (no moving parts...moving parts add to wear and tear and maintenance.  Also shortens life cycle eg. liquid electrolytes in batteries)

Minimal use of electronics (often difficult to analyse and fix - also need a power source. The Unpowered Measured Irrigation Controller (UMIC) is a great example of using no electronics to irrigate)

Recyclability/Reusability at the end of life cycle


We need to turn the 'possible' into the 'probable'...just need to commit to R&D, rebates, VC and many, if not all, of the principles mentioned above...

Using Permaculturist Tim Winton's 80/20 principle (The first 80% of work for 20% of the effort, the last 20% of work for 80% of the effort):
80% renewables by 2025 (the low hanging fruit)
100% renewables by 2030 (the hard stuff)

Overall 'average' mix at the 2030 'End Game', could look approximately like this:

NOTE: These percentages will vary when comparing 'Stationary Power' and mobile/'Non-Stationary' power


35% 'Green Hydrogen' (+ ideally 'Green Ammonia' combined with biochar for agronomy applications) - via Solar electrolysis/micro-electrolysis (or via Cyanobacteria, (synthetic) micro-algae, Microbial Electrolysis Cells (MECs))-> Hydrogen storage and Hydrogen fuel cells = stationary and mobile power.

Also see previous blogs 'An appropriate technology Renaissance?', 'A 'Green economics' for the future?' and 'Micro-electrolysis for Hydrogen fuel production'. Can also be produced from excess power on the grid.

30% solar PV with solid state batteries when they're commercially available eg. Samsung, ?Ozzie designed and manufactured (without needing precious elements such as Silver for the electrodes), for hybrid ('Virtual Power Plants') or standalone (for remote application/energy sovereignty/freedom). Stationary and mobile power.

15% wind (where available in abundance - we're almost up to 10% of total power supply in Australia - there's probably more sites out there but moving parts increase wear and tear and maintenance) - stationary power.
10% biomass (can use various sustainable feedstocks resulting in biochar production as cogeneration which can plug into the rest of the economy to de/re-carbonise it - see 'The biochar economy' page. Can be used for combined heat and power (CHAP or CHP) eg.Power Pallet PP30, ECHO2, primary power or backup generation. Stationary and mobile power. Possible cogen options with TLUD stoves and the Kon-Tiki 'Rolls' too. 50 million bucks seed funding for biomass technologies from ARENA maybe?
5% Concentrated Solar Thermal (CST) with Ammonia/Molten salt/other storage. Stationary power.

5% Other. The mind boggles. Some already commercialised eg.Stirling engines (external combustion engines), some at the prototype stage eg. micro-hydro HELLIOGREEN tech, Microbial Fuel Cells (MFCs), some (maybe) at the lab stage of R&D eg.air batteries,  biophotovoltaics (eg.Cyanobacteria, micro-algae) and some completely unknown/undiscovered. In reality, this percentage could be much higher in the future. Maybe we'll discover an even 'greener' solar/? energy source that ticks all the boxes of Apptech.

What shouldn't have a future...'Faith' in the Principle of 'Technology Neutrality'...

choice of technology should at least be based on 'Faith' of the less politically biased principles outlined above for Apptech. Note also that choice of guiding design principles will always be a compromise...who said technology design was politically neutral? Reality should be a choice.
-Natural gas: Never going to be ecologically sustainable. We don't need new natural gas infrastructure eg. Fracking, large pipelines, backup generators
-Coal...brown coal H2 gasification, CCS (WTF!) Time wasting and expensive - don't even bother with microalgae. Rebranded coal is still ecologically unsustainable), metallurgical coal (can use Hydrogen for Iron Ore reduction)
-Oil (with the classic car and motorbike exemption - of course) - we're beyond 'Peak Oil' - get over it. Replacing the last remaining petrol or diesel combustion engines will probably fall in the last 10% of work.

Maybe use bio substitution with biodiesel made from seawater microalgae (lipids) fed with CO2 from cement factories in situ and the remaining microalgae biomass is biocharred (with CHP for the factory) and added to concrete along with the cement, (less) crushed stone and sand (See 'Burn: Using Fire to Cool the Earth' book for more info). Not sure about petrol other than ethanol addition made from, say, sugarcane bagasse or microalgae. The debate is still out about what is a safe level of ethanol in petrol that doesn't damage the engine.
-Large-scale hydroelectric dams eg. Snowy Hydro 2.0 (read the final 'World Commission on Dams' report - link provided below)

-Nuclear - small that will reduce the toxic waste and 'security' issue


Now what?
Goodbye 20th century Second Industrial Revolution!
Hello 21st Century Third (?Fourth) Green Industrial Revolution...distributed, decentralised and local peer-to-peer power production on demand...

Read More 0 Comments





Top 16 things you could do to retrofit your home and ?garden to make it more resilient

1) Solar PV system

-without storage...until solid state electrolyte batteries are available OR when affordable micro-electrolysis systems for Hydrogen gas (H2) production (eg.Enapter) with storage and fuel cell become available. Biochar can be integrated both into the H2 storage and fuel cell electrodes

2) Low energy/energy efficient electrical devices

eg. kettle, reverse cycle aircon, LED globes/lights, oven, pressure cooker, heat pump (for hot water..uses approximately 1/4 of power (depending on the tech) compared to an electrical hot water tank which uses approximately 40% of your power).

3) Insulation with high R value in the ?walls and roof

Cheap way to regulate climate inside the house. Biochar can be used as a filler in the insulation. Biochar also provides electromagnetic shielding from 'Electrosmog'. If high humidity, biochar-based render on the walls can help regulate humidity too. If building a new home, biochar can be added to plaster for humidity regulation and reduction of 'Electrosmog' as well.

4) Water tank harvesting water off the roof

This could be a primary water source or backup

5) TLUD biomass gasifier stove eg. Permastove V5

They produce heat for cooking/water purification and biochar as a 'waste' product. This biochar can be used for (6), (7), (8), (10), (11) and (12). Can buy pellets in many places eg. sawdust or rice husk. Primary or backup stove.

See the page on this website

6) Biochar for air filtration

If the air quality is poor eg. In a large city. Could do this by filling up microgreens trays and placing them around the home

7) Biochar for water filtration

If the water quality is poor. Can add to water jugs and replace the Carbon filter.

8) Microgreens grown with biochar

A good way to get trace elements and nutrients into your diet and have a tasty smoothie or salad.  Spent biochar with biomass residue can be added to the Permachar Kitchen Garden (10) or food forest (14)

See the page on this website.

9) Kon-Tiki 'Rolls'

I'd suggest using a Kon-Tiki 'Rolls' for larger amounts of biochar that could be used for insulation, render or plaster in (3) and for the biochar aquifers in (10). The Kon Tiki 'Rolls' could then be used to make biochar to help grow other plants eg.'Food forest' (14) if there is space which should include biomass plants that can be coppiced eg.Acacias, olive, oil mallee et al for future biochar production and expansion of the food forest (14) or PKG (10) or for a small income eg. sell biochar bags.

See the page on this website.

10) Permachar Kitchen Garden (PKG)

If you've got a back/front yard or a rooftop garden. Grow some herbs and veggies for your diet.

See the page on this website.

11) Self-composting 'Humanure' toilet

Indoor or outdoor. Conserves water and creates great compost - just add biochar! Compost can be added to the PKG (10) or food forest (14).

12) Worm farm to compost kitchen scraps/'waste' (or could feed to chickens (13))

Can add milled biochar to the system. The worms will help innoculate the biochar. Also, you can test the quality of the biochar...if the worms avoid it, then it's unsuitable for the chickens (13), PKG (10) or food forest (14)

13) Chicken raising (if you're not Vegan).

Provide eggs and meat (if you're not Vegetarian...could always barter with it/sell it) when the chickens stop laying. Can add milled biochar to the chicken food which reduces parasites and add to chicken bedding which will innoculate the biochar with micro-organisms from manure and will provide great mulch/slow release fertiliser for the PKG (10) or food forest (14).

14) Food Forest

If you've got the space, why not try growing some fruit, nut and biomass plants. Just add inoculated/quenched (Kon-Tiki 'Rolls') biochar into the planting holes and use chicken bedding waste for mulch around the base of the plants which will also act as a slow-release fertiliser and reduce evaporation from the soil.

15) Compost tea

Can use feedstock from the worm farm to inoculate batches. This can be used as a foliar spray on the PKG (10) or food forest (14).

16) Solar oven

Vacuum tube with reflectors eg. GoSun 'Sport' solar oven (if you add one to your cart and wait 12 hours you get a discount code that results in free shipping to Australia (or anywhere else)). Good for camping/surfing in the fire season when you can't have a fire. Or if you can't access feedstock for cooking or if you're feeling lazy and don't want to build a fire.  Much more energy efficient than electric/gas ovens. Can use to bake bread, reheat food, cook meat and veg etc.


These 'Top 16' technologies could also be used to retrofit a shipping container home and ?garden for more remote living or used around the urban landscape on reclaimed land...